Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Jan Vymazal (Ed.)Invasive species management typically aims to promote diversity and wildlife habitat, but little is known about how management techniques affect wetland carbon (C) dynamics. Since wetland C uptake is largely influenced by water levels and highly productive plants, the interplay of hydrologic extremes and invasive species is fundamental to understanding and managing these ecosystems. During a period of rapid water level rise in the Laurentian Great Lakes, we tested how mechanical treatment of invasive plant Typha × glauca shifts plant-mediated wetland C metrics. From 2015 to 2017, we implemented large-scale treatment plots (0.36-ha) of harvest (i.e., cut above water surface, removed biomass twice a season), crush (i.e., ran over biomass once mid-season with a tracked vehicle), and Typha-dominated controls. Treated Typha regrew with approximately half as much biomass as unmanipulated controls each year, and Typha production in control stands increased from 500 to 1500 g-dry mass m−2 yr−1 with rising water levels (~10 to 75 cm) across five years. Harvested stands had total in-situ methane (CH4) flux rates twice as high as in controls, and this increase was likely via transport through cut stems because crushing did not change total CH4 flux. In 2018, one year after final treatment implementation, crushed stands had greater surface water diffusive CH4 flux rates than controls (measured using dissolved gas in water), likely due to anaerobic decomposition of flattened biomass. Legacy effects of treatments were evident in 2019; floating Typha mats were present only in harvested and crushed stands, with higher frequency in deeper water and a positive correlation with surface water diffusive CH4 flux. Our study demonstrates that two mechanical treatments have differential effects on Typha structure and consequent wetland CH4 emissions, suggesting that C-based responses and multi-year monitoring in variable water conditions are necessary to accurately assess how management impacts ecological function.more » « less
-
Abstract Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We firstdefineeach of the major C pools and fluxes and providerationalefor their importance to wetland C dynamics. For each approach, we clarifywhatcomponent of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such aswhereandwhenan approach is typically used,whocan conduct the measurements (expertise, training requirements), andhowapproaches are conducted, including considerations on equipment complexity and costs. Finally, we reviewkey covariatesandancillary measurementsthat enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.more » « less
An official website of the United States government
